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Non-conservation of ‘geostrophic mass’
in the presence of a long boundary

and the related Kelvin wave
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The evolution of a localized flow in a half-plane bounded by a rigid wall is analysed
when the total mass is not conserved within the equivalent-barotropic quasi-
geostrophic (QG) approximation. A simple formula expressing the total geostrophic
mass in terms of the QG potential vorticity is derived and used to estimate the range
of the geostrophic mass variability. The behaviour of the total mass is analysed for a
system of two point vortices interacting with a wall. Distributed localized perturba-
tions are examined by means of numerical experiments using the QG model. Two types
of time variability of the total geostrophic mass are revealed: oscillating (the mass
oscillates near some mean value) and limiting (the mass tends to some constant value
with increasing time).

In the framework of a rotating shallow-water model, the QG model is known to
describe the slow evolution of the geostrophic vorticity, assuming the Rossby number
to be small. Consideration of the next-order dynamics shows that conservation of the
total mass and circulation is provided by a compensating jet taking away the surplus
or shortage of mass from the localized geostrophic disturbance. The along-wall jet
expands with the fast speed of Kelvin waves to the right of the initial perturbation.
The slow time-dependent amplitude determines the jet sign and intensity at each
instant. The dynamics of the compensating jet are discussed for both oscillating and
limiting regimes revealed by the QG analysis.

The role of Kelvin waves in establishing the usual Phillips condition for conservation
of circulation of the along-wall QG velocity is discussed. In the case of periodic motion
or motion in a finite domain, the approximation of an infinitely long boundary can
be used if (i) the typical basin scale greatly exceeds the typical size of the localized
perturbation and the Rossby scale; and (ii) the time does not exceed the typical time
required for the Kelvin wave to travel the typical basin scale. Both these conditions
are typical of synoptic variability in the ocean.

1. Introduction
This work is motivated by the fact (not well-known) that for a localized flow near

an infinitely long boundary (e.g. in a channel or half-plane), the standard derivation
of quasi-geostrophic (QG) equations is incomplete. In particular, it cannot provide:
(i) conservation of geostrophic mass; (ii) locality of all successive approximations.
The QG approximation is based on taking into account only a slow rate of evolution
for fast rotating fluid (small Rossby number). In this work we elucidate that this is
not adequate for domains with long boundaries (much longer than the flow scale that
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is typical for synoptic variability in the ocean) and look closely at the interaction of
slow and fast modes through analytical and numerical modelling.

First, we consider the standard derivation of QG equations on the semi-infinite
f -plane from a full rotating shallow-water (RSW) system which is often used to
reproduce the most important vertical mode of large-scale planetary flows when their
vertical scale is much less than their horizontal. The non-dimensional RSW equations
take the form

ε
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∂T
+ ε
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U

∂U
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, (1.1a)
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Here V = (U (x, y, T ), V (x, y, T )) is the two-dimensional velocity field, P is the geopo-
tential perturbation related to the dimensionless elevation as H =H0(1 + εP (x, y, T ))
is the layer depth, the parameter ε = U0/f Rd is the Rossby number, and U0 is the
horizontal velocity scale. The Rossby scale Rd =

√
gH0/f and the typical geostrophic

time (εf )−1 are chosen as the spatial and time scales, respectively; g and f are the
acceleration due to gravity and Coriolis parameter, respectively.

The velocity obeys the no-flux boundary condition at the rigid wall y =0

V = 0 at y = 0. (1.2)

If we assume that the motion is slow and the Rossby number ε is small, as usual,
the QG solution is sought in the form of the following asymptotic expansions (see
e.g. Pedlosky 1987):

(U, V, P ) = (U0, V0, P0)(x, y, T ) + ε(U1, V1, P1)(x, y, T ) + · · · . (1.3)

At the lowest order we obtain from (1.1), (1.2):

V0 =
∂Ψ

∂x
, U0 = −∂Ψ

∂y
, Ψ = P0, (1.4a–c)

∂(∇2Ψ − Ψ )

∂T
+ J (Ψ, ∇2Ψ ) = 0,

∂Ψ

∂x
= 0 at y = 0 (1.4d, e)

Here J (a, b) = ∂(a, b)/∂(x, y) is the Jacobian operator. Let the initial field

Ψ |t=0 = ΨI (x, y) (1.5)

be localized, i.e.

ΨI → 0, y → +∞, x → ±∞. (1.6)

Here and below the subscript ‘I ’ denotes initial fields.
Obviously, for conditions (1.4e), (1.6) to be consistent, it is necessary that

ΨI = 0 at y = 0. (1.7)

We assume that the decay (1.6) is sufficiently rapid so that the initial energy and
enstrophy are finite.

We are looking for the solution that conserves energy and enstrophy (note that
these quantities are conserved under condition (1.4e)). This means that conditions of
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locality (1.6) are valid at any time, i.e.

Ψ → 0, y → +∞, x → ±∞, (1.8)

since in the opposite case the energy and enstrophy become infinite. Therefore, by
virtue of (1.4e) and (1.8), in the localized case the QG streamfunction is always
identical to zero at the infinitely long boundary:

Ψ = 0 at y = 0. (1.9)

It readily follows from (1.4d) that the total geostrophic mass

M =

∫
y>0

Ψ dx dy

is conserved only if ∫ ∞

−∞

∂2Ψ

∂y∂T

∣∣∣∣
y=0

dx = 0. (1.10)

But the problem (1.4d), (1.5), (1.9) is well-posed and, therefore, condition (1.10),
generally, is not satisfied (see § 2 below and Reznik & Grimshaw 2002, hereafter
referred to as RG).

The first-order velocity normal to the wall has the form

V1 =
∂P1

∂x
+

∂U0

∂T
+ U0

∂U0

∂x
+ V0

∂U0

∂y
; (1.11)

therefore, the first-order no-flux condition is written as

∂P1

∂x
= −

(
∂U0

∂T
+ U0

∂U0

∂x

)
at y = 0. (1.12)

For the asymptotic procedure to be self-consistent P1 is also required to be localized.
By virtue of (1.4b), (1.12) this is possible only under the condition (1.10) which,
generally, is not satisfied, as mentioned above. Thus, the ‘slow’ solution (1.3) of
problem (1.1), (1.2), (1.5), (1.6) does not conserve the total mass and is not localized.

The locality of solution and mass conservation can be satisfied only in the frame-
work of the full RSW model, taking into account the fast Kelvin waves as demon-
strated in RG. It was shown that the total (geostrophic + ageostrophic) mass is
conserved due to the compensating along-shore jet ‘emanating’ from the localized QG
disturbance. This jet, formed by the first-order Kelvin wave plus the slow correction
P1, provides a sink or source of the QG mass. Note that the composite (geostrophic +
ageostrophic) first-order solution is localized, although the correction P1 and the first-
order Kelvin wave are non-localized separately. The locality condition (1.8) is crucial
in the above consideration since in the case of non-localized (periodic or non-periodic
along the y-axis) motion, the boundary streamfunction Ψ |y=0 = c(T ) is, generally,
non-zero, being determined from the no-flux condition for the ageostrophic first-
order velocity field (cf. Phillips 1954; McWilliams 1977). It is important to note that
the above consideration does not mean that the QG approximation is ‘deficient’ or
breaks down in the localized case: equations (1.4), (1.5), (1.9) correctly describe the
slow component of motion as demonstrated in RG. But, contrary to non-localized
motion, in this case the lowest-order QG dynamics should be supplemented with the
fast Kelvin wave to provide the solution locality and mass conservation.

Dorofeyev & Larichev (1992) met an analogous problem when considering the
reflection of linear Rossby waves from the meridional boundary in the framework of
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the RSW model on the β-plane. They revealed that the total mass of Rossby waves
is not conserved, and the surplus or shortage of mass is taken away by fast Kelvin
waves. Also, Helfrich & Pedlosky (1995) examined the QG motion in periodic and
unbounded channels and indicated that in the localized case non-conservation of slow
circulation results in radiation of Kelvin waves ‘emanating from the local region’ of
slow motion.

The key role of the Kelvin waves in the process of geostrophic adjustment near
boundaries was investigated in a number of studies after the pioneering work by Gill
(1976) (e.g. Hermann, Rhines & Johnson 1989; Tomasson & Melvile 1992; Helfrich,
Kuo & Pratt 1999; RG). Interaction of Kelvin waves with other modes of the system
was examined, for example, by Miles (1972), Grimshaw & Allen (1988) and McCalpin
(1995). In the presence of slowly varying environmental parameters, the Kelvin wave
can be described by an approximate solution where along-shore geostrophy is typically
retained (e.g. Fedorov & Melvile 1996; Helfrich et al. 1999).

The aim of this paper is to examine the variability of the total mass for the slow
geostrophic flow in the localized case and the related Kelvin wave responsible for the
mass conservation. The paper is organized as follows. In § 2 we derive the general
formula expressing the mass of slow QG component in terms of the QG potential
vorticity (PV). Using this formula we obtain limits of the QG mass variability and
show that the mass variations are determined by the displacements of fluid elements
with non-zero PV perpendicular to the boundary. The simplest system possessing this
property consists of two point vortices interacting with each other and with the wall.
The dynamics of this system are analysed in § 3. Distributed localized perturbations
are examined by means of numerical experiments, described in § 4, using the QG
model. Two types of time variability of the QG mass are revealed: oscillating (the
mass oscillates near some mean value) and limiting (the mass tends to some constant
value with increasing times). The first-order correction to the QG solution describing
the compensating jet is derived in § 5 by asymptotic analysis of the full RSW
model for a small Rossby number. Dynamics of the compensating jet for various
regimes of QG mass variability are examined. A comparison between the localized
and periodic solutions is discussed in § 6 where limits of validity of the model
considered for a localized disturbance interacting with an infinitely long boundary
are obtained. In § 7 our results are summarized.

2. Some general results for the QG model
2.1. Formulae for the geostrophic mass in the presence of a boundary

We start with the QG potential vorticity equation (1.4d) with initial and boundary
conditions (1.5), (1.6), (1.9). It was demonstrated in RG (§ 4.3) that the energy and
enstrophy of the localized slow motion are conserved but the total geostrophic mass

M =

∫
y>0

Ψ dx dy (2.1)

is not conserved. To show this we integrate (1.4d) over the half-plane y > 0 to obtain
the equation

∂M

∂T
= F = −

∫ ∞

−∞

∂2Ψ

∂y∂T

∣∣∣∣
y=0

dx, (2.2)
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and take into account that the lowest-order along-wall velocity circulation

Γ = −
∫ ∞

−∞

∂Ψ

∂y

∣∣∣∣
y=0

dx (2.3)

is not a conserved quantity.
Here we express Ψ and the total geostrophic mass (2.1) in terms of the potential

vorticity Q = ∇2Ψ − Ψ . To find M we integrate this equation over x:

d2H

dy2
− H = R =

∫ ∞

−∞
Q dx, H =

∫ ∞

−∞
Ψ dx. (2.4a, b)

Using (1.9) we have from (2.4a):

H = −1

2

(
ey

∫ ∞

y

Re−y dy + e−y

∫ y

0

Rey dy

)
+

1

2
e−y

∫ ∞

0

Re−y dy. (2.4c)

Integration of (2.4a) over y gives

M = −
∫

y>0

Q dx dy − dH

dy

∣∣∣∣
y=0

. (2.5)

Substituting (2.4c) into (2.5) we arrive at the following formula for the total
geostrophic mass:

M = −
∫

y>0

Q(x, y, t)(1 − e−y) dy. (2.6)

It is useful to represent the integral in (2.6) in terms of the Lagrangian coordinates
x0, y0:

M = −
∫

y0>0

Q0(x0, y0)
[
1 − e−y(x0,y0,t)

]
dx0 dy0. (2.7)

Here Q0(x0, y0) is the initial potential vorticity field and the Lagrangian coordinates
x0, y0 are related to the Eulerian coordinates x, y in the following way:

x = x(x0, y0, t), y = y(x0, y0, t), r|t=0 = (x0, y0), (2.8)

∂x

∂t

∣∣∣∣
x0,y0

= u(x, y, t) = −∂Ψ

∂y
,

∂y

∂t

∣∣∣∣
x0,y0

= v(x, y, t) =
∂Ψ

∂x
, (2.9a, b)

where u, v are the geostrophic velocity components.
Representations (2.6), (2.7) allow us to draw two simple but important conclusions.

First, the mass of perturbation steadily translated along the boundary y = 0 does not
change in time, as readily seen from (2.6). Second, it follows from (2.7) that the total
mass changes are determined by the displacements of fluid particles perpendicular
to the boundary y =0; displacements along the boundary do not influence the total
mass M . Note also that only the displacements of fluid particles with non-zero PV
make a contribution to the integral (2.7).

Multiplying (1.4d) by y and integrating the resulting equation over the half-plane
y > 0 we obtain the useful relationship∫

y>0

yQ(x, y, t) dx dy = const = C0, (2.10)
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which means that the ‘PV centroid’ remains at a fixed distance from the wall. In the
Lagrangian variables (2.10) takes the form∫

y0>0

y(x0, y0, t)Q0(x0, y0) dx0 dy0 = const = C0. (2.11)

2.2. Limits of the geostrophic mass variability

It readily follows from (2.6), (2.7) that the absolute value of the geostrophic mass |M |
is bounded from above by the integral of the PV modulus:

|M | �

∫
y>0

|Q(x, y, t)|dx dy =

∫
y0>0

|Q0(x0, y0)| dx0 dy0. (2.12)

It is possible, however, to obtain a subtler estimate for |M | in the case of sign-defined
PV. In the integrand in (2.7) the initial PV Q0 is given by the initial conditions and
the total mass changes only due to the time-dependent displacements y of the fluid
particles perpendicular to the wall. In turn, the displacements obey the restriction
(2.11). What is the range of the total mass variability generated by the displacements
y satisfying (2.11) given initial PV distribution Q0? We emphasize that we mean all
possible displacements, not only those obeying equations (2.8), (2.9) determining the
Lagrangian coordinates.

To answer this question we investigate extrema of the functional

Ma = −
∫

y0>0

Q0(x0, y0)
[
1 − e−ȳ(x0,y0)

]
dx0 dy0 (2.13a)

under the condition∫
y0>0

ȳ(x0, y0)Q0(x0, y0) dx0 dy0 = const = C0, (2.13b)

assuming Q0(x0, y0) to be given and varying ȳ(x0, y0). Simple analysis using the
Lagrange multipliers method (see Appendix A) indicates that the extremal of the
problem (2.13) is given by the equation

ȳ = ȳe =

∫
y0>0

y0Q0(x0, y0) dx0 dy0∫
y0>0

Q0(x0, y0) dx0 dy0

(2.14)

where ȳe is a constant distance of the PV centroid from the wall.
Calculation of the second variation on the extremal (2.14) shows that the second

variation is sign-defined only if the PV Q0 does not change its sign, i.e. sufficient
conditions for the existence of a maximum or minimum of the functional Ma are
satisfied only in the case of PV of one sign. Also, the coordinate ȳe is positive for Q0

of a fixed sign. Thus, for PV of one sign the absolute value of functional (2.13a) is
maximal on extremal (2.14), i.e. we have the following inequality:

|M | � |Ma|max =
(
1 − e−ȳe

) ∫
y0>0

|Q0(x0, y0)| dx0 dy0. (2.15)

Obviously, (2.15) provides the better estimation of the upper bound of |M | than
equation (2.12). Physically (2.15) means that for a given sign-defined initial PV
distribution the modulus of the total mass |M | is maximal if the disturbance is



Non-conservation of ‘geostrophic mass’ 241

elongated parallel to the boundary at the level y = ȳe, i.e. if all fluid particles are at
the equal distance ȳe from the wall.

Restriction on |M | from below follows from the energy conservation:∫
y>0

Ψ Q dx dy = −2E = const. (2.16)

One can readily obtain from (2.16) that∫
y>0

|Ψ | dx dy �
2E

|Q0|max

. (2.17)

If Q0 is of one sign then the streamfunction Ψ is also of one sign (opposite to the
sign of Q0) by virtue of the equation Q = ∇2Ψ − Ψ and PV conservation. Therefore,
for this case we have

|M | =

∫
y>0

|Ψ | dx dy �
2E

|Q0|max

. (2.18)

Thus, the total geostrophic mass M is bounded in absolute value by the parameter
|Ma|max (see (2.15)) from above and by the value 2E/|Q0|max from below. Both bounds
do not depend on time and are determined in terms of the initial conditions.

Restrictions (2.15), (2.18) provide a rough estimate of the variability of the total
geostrophic mass given a sign-defined initial PV. Of course, these estimates do not
take into account details of dynamics described by (1.4d); therefore, maximum (2.15)
and minimum (2.18) are hardly achieved in the general case. However, maximum
(2.15) can be achieved in the simplest case of two point vortices (see § 3). Also, (2.15)
turns out to be useful for interpreting the numerical experiments in § 4.

3. System of two point vortices
It was shown in § 2.1 that the total mass of localized QG perturbation changes

in time if (i) the perturbation is not steadily translated along the wall, and (ii) the
fluid particles with non-zero PV are displaced perpendicular to the boundary y = 0.
Obviously, the simplest system possessing these properties consists of two point vor-
tices interacting with each other and with the wall; the dynamics of this system are
analysed below. General equations governing the system of N point vortices interact-
ing with the wall are represented in Appendix C; for N = 2 the system of equations
(C 4) for the vortex trajectories takes the form

ẋ1 =
A1

2π
K1(2y1) +

A2

2π

[
ȳ12K1(r̄12)

r̄12

− y12K1(r12)

r12

]
, (3.1a)

ẏ1 =
A2

2π
x12

[
K1(r12)

r12

− K1(r̄12)

r̄12

]
, (3.1b)

ẋ2 =
A2

2π
K1(2y2) +

A1

2π

[
ȳ12K1(r̄12)

r̄12

+
y12K1(r12)

r12

]
, (3.1c)

ẏ2 =
A1

2π
x12

[
K1(r̄12)

r̄12

− K1(r12)

r12

]
. (3.1d)

Here xi = xi(t), yi = yi(t), i =1, 2, are the vortex coordinates, subscript i denotes the
vortex number, x12 = x1 − x2, y12 = y1 − y2, ȳ12 = y1 + y2, and

r12 =

√
x2

12 + y2
12, r̄12 =

√
x2

12 + (y1 + y2)2. (3.2a, b)
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Relationship (C 5) can be written as follows

A1y1 + A2y2 = (A1 + A2)yc, (3.3)

where yc is a constant distance from the vortex pair centroid to the wall. Mass M2

and its time derivative Ṁ2 are expressed by

M2 = −A1(1 − e−y1 ) − A2(1 − e−y2 ), (3.4a)

Ṁ2 =
A1A2

4π
x12

[
K1(r12)

r12

− K1(r̄12)

r̄12

]
(e−y1 − e−y2 ). (3.4b)

The set of equation (3.1) is readily reduced to two equations for the distances
between the vortices x12, y12:

ẋ12 = A1K1(2y1) − A2K1(2y2) − (A1 + A2)
y12K1(r12)

r12

+ (A2 − A1)
ȳ12K1(r̄12)

r̄12

, (3.5a)

ẏ12 = (A1 + A2)x12

[
K1(r12)

r12

− K1(r̄12)

r̄12

]
(3.5b)

where Ak = Ak/2π, k = 1, 2. The coordinates y1, y2 in (3.5) are expressed in terms of
the constant yc and variable y12 using equation (3.3):

y1 = yc +
A2

A1 + A2

y12, y2 = yc − A1

A1 + A2

y12. (3.6a, b)

Equations (3.5), (3.6) allow calculation of the variables x12, y12, y1, y2 depending on
the time t and, therefore, the mass M2. To obtain the phase portraits (the relation
between x12 and y12) of system (3.5), (3.6) we use the energy conservation integral,
which is written as follows:

2A1A2[K0(r12) − K0(r̄12)] − A2
1K0(2y1) − A2

2K0(2y2) = const. (3.7)

Typical behaviour of the vortex pair near the rectilinear wall is presented in
figures 1–3. The phase portraits (part (a)) indicate that if the initial distance between
the vortices is sufficiently small, then the vortices move periodically, rotating around
some moving centre.

Correspondingly, the total mass M2 and its time derivative Ṁ2 are periodical
functions of time (part (b)). In the case when the amplitudes A1, A2 are of the same
sign (figures 1 and 2), the minimal values of M2 (see part (b)) are equal to −|M (a)

2 |. To
determine the maximum values of M2 we use the fact that in accordance with (3.4b)
(see also part (c)) the time derivative Ṁ2 vanishes at two points: at the point y1 = y2

which corresponds to the minima of mass, and at the point x1 = x2 corresponding to
the maxima of mass M2. Thus, we come to the simple rule: the absolute value of
the mass of the two-point vortex system is maximal when the system is elongated
along the wall and minimal for the system elongated perpendicular to the wall. An
analogous effect occurs for the distributed perturbations (see the next Section).

If the initial distance is sufficiently large, then the motion of the pair is non-periodic,
with the distance between the vortices increasing monotonically from some time on.
Correspondingly, the interaction between the vortices weakens and as time passes, the
vortices move practically rectilinearly and uniformly along the boundary. The total
mass M2 and derivative Ṁ2 tend to some constant value and to zero, respectively,
with increasing time.



Non-conservation of ‘geostrophic mass’ 243

–7 0 7
–3.75

0

3.75
(a)

(b)

x

y

0 10 20 30 40 50

–1.28

–1.24

–1.20

–1.16

–1.12

M
as

s

0 10 20 30 40 50

–0.08

–0.04

0

0.04

0.08

M
as

s 
de

ri
va

ti
ve

Time 

Figure 1. Behaviour of a pair of point vortices of the same magnitude and sign interacting
with a wall. (a) The phase plot of the system, for A1 = 1, A2 = 1, y0 = 1. (b) Time evolution of
the total mass of the pair. The oscillating curves correspond to small distances between the
vortices or closed phase trajectories. The other curve corresponds to open phase trajectories.

The shapes of the phase trajectories depend substantially on the vortex signs. If
the vortices are of the same sign, then the periodic trajectories are lens-like, with the
longitudinal size of the lens (along the x-axis) increasing and tending to infinity as
its transversal size (along the y-axis) tends to some limiting value �. For example
if A1 = A2 = 1, the parameter �= 2.4516. The ‘limit’ of an infinitely long lens is a
separatrix between periodic and non-periodic regimes.

In the case of the vortices having opposite signs, the shape of the phase trajectories
is more ‘usual’ and the separatrix is a loop with two infinite ‘tendrils’ (see figure 3).
We note that this phase portrait is valid only if the vortex amplitudes are different,
i.e. |A1| �= |A2|. If A1 = −A2, then the periodic regimes are impossible.
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Figure 2. The same as in figure 1 except that the vortices are of different amplitude:
A1 = 0.5, A2 = 1.

Thus, the total mass of two point vortices interacting near a wall either oscillates
periodically in time in the vicinity of some mean value (small distance between the
vortices) or tends to some constant (large distance between the vortices). In the case
of three point vortices (not shown) the total mass behaves analogously, but the oscillat-
ing regime, generally, is not periodic.

What is the evolution of mass of a system of distributed vortices? Let the vortices
be monopoles and the distance between them greatly exceed their typical sizes. One
can assume that in this case the system behaviour would be qualitatively the same as
the behaviour of the system of point vortices. But if the vortex size is comparable
to the distance between them, then changes in the vortex structure can affect the
total mass of the system. To study this effect we consider numerical experiments with
various localized initial states.
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Figure 3. The same as in figure 1 except that the point vortices are of different sign:
A1 = −0.5, A2 = 1.

4. Numerical experiments with distributed vortices
In the numerical model for equation (1.4d), the Arakawa scheme was used to

represent the Jacobian; the time derivative was approximated either by central diffe-
rences or by the Adams–Bashforth formula. Biharmonic viscosity provided a sink
for the small-scale vorticity. The calculations were made for a channel bounded by
two solid walls at y = 0, L, the motion along the channel (x-axis) being assumed
to be periodic. The no-flux condition Ψ = 0 at y = 0, L and the no-slip condition
Q =0 at y =0, L were used at the channel boundaries. The initial perturbation was
located near the south boundary y = 0; the channel width L and period along the
x-axis were sufficiently large to neglect the interaction of the perturbation with the
north wall y = L and adjacent boxes. Numerical experiments with various initial
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perturbations showed that the total mass is rather robust, depending weakly on
space–time resolution and the domain size.

The initial streamfunction Ψ0 in the experiments was calculated given initial
potential vorticity Q0 by solving the equation

∇2Ψ0 − Ψ0 = Q0, (4.1)

where Q0 is conveniently determined by the finite-area function

F (z) =




A

z

(
J1(kz)

J1(ka)
− z

a

)
, z < a

0, z � a.

(4.2)

Here A, k, and a are constants; J1(z) denotes the first-order Bessel function, and the
variable z is defined by

z =

√
x2

s2
+ (y − d)2, (4.3)

where s determines the perturbation size along the x-axis and d is the distance of
the centre of the perturbation from the boundary y = 0. For s < 1 the perturbation
is elongated along the y-axis; for s > 1 it is elongated along the x-axis. In numerical
experiments represented in figures 4–7 the following parameter values were adopted:
A= 2, k = 5.136, a = 1, d = 1.

For a vortex dipole the initial PV was prescribed in the form

Q0 =
y − d

z
F (z), s = 1. (4.4)

The dipole evolution is qualitatively similar to the evolution of pair of point vortices
of opposite sign (figure 4). Interaction with the boundary results in the destruction
of the dipole, the vortices gradually move apart, and the pair eventually splits into
two monopoles moving in opposite directions along the boundary. Correspondingly,
the total mass increases and tends to a new constant value with increasing time. The
change in the total mass exceeds 50% of its initial value in this case, i.e. it is quite
significant.

The evolution of the pair of vortices of the same sign was examined for the initial
state

Q0 =
|y − d|

z
F (z), s = 1. (4.5)

The vortices rotate around some common centre, elongate and deform as is seen from
the evolution of PV field (figure 5). The total mass variability in this case is sub-
stantially less than for the dipole. The main change of the mass takes place during the
initial adaptation period, then the pair transforms into an approximately axisymmetric
vortex and the mass oscillates with small amplitude near its mean value. The mass
is maximal at T =1 (minimal at T = 0) when the perturbation is elongated along
(perpendicular to) the wall, as was found for the point vortex pair in the previous
Section.

Thus, in both these cases the vortex system evolution results in one or two monopole
vortices interacting with the boundary. We carried out special numerical experiments
to study the dynamics of the monopoles near the wall. The calculations were made
for an initially circular vortex with Q0 = F (z), s = 1 (figure 6) and for a vortex initially
elongated along the y-axis with Q0 = F (z), s = 0.5 (figure 7). In both these cases the
vortex mass oscillates in time similarly to the total mass of two same-sign point
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from its initial value M1 is shown in (c).
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Figure 6. The same as in figure 4 except that it is for the initially circular vortex;
Q0 = F (z), s = 1.

vortices separated by a small distance. The variability of mass of the elongated vortex
is somewhat larger than of the circular one, which is obviously related to larger
displacements of fluid particles along the y-axis when the elongated vortex is rotating
around its centre. Again, the total mass is minimal (maximal) when the perturbation
is elongated perpendicular to (along) the wall.
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Figure 7. The same as in figure 4 except that it is for the vortex elongated
along the y-axis; Q0 = F (z), s = 0.5.

It should be noted that the amplitude of mass oscillations for the monopoles, being
rather small, remains nearly the same after the initial adaptation and this is almost
independent of the time and spatial resolution of our numerical scheme with small
viscosity. By virtue of the symmetry of the problem (1.4d), (1.5), (1.9) the monopole
evolution is equivalent to the evolution of the dipole composed of the vortex and
its ‘image’ on the unbounded plane. The above-described non-decaying oscillations
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of the vortices in the dipole indicate that their inviscid evolution may not tend to a
stationary limit.

5. First-order correction
Analytical calculations and numerical simulations in the preceding Sections show

that the mass of localized QG disturbance varies in time. At the same time, the
total (geostrophic + ageostrophic) mass in the full RSW model (which the QG
equations follow for small Rossby numbers) should be conserved. To provide the
mass conservation we have to take into account the fast ageostrophic waves, i.e. to
relax the assumption that the motion is slow. The non-dimensional equations of the
RSW model take the following form (cf. (1.1)):

∂U

∂t
+ ε

(
U

∂U

∂x
+ V

∂U

∂y

)
− V = −∂P

∂x
, (5.1a)

∂V

∂t
+ ε

(
U

∂V

∂x
+ V

∂V

∂y

)
+ U = −∂P

∂y
, (5.1b)

∂Π

∂t
+ ε

{
∂(UΠ )

∂x
+

∂(V Π)

∂y

}
= 0. (5.1c)

The solution obeys the no-flux condition (1.2).
Here we consider localized and geostrophically balanced initial fields, i.e.

P = ΨI (x, y), U = UI (x, y) = −∂ΨI

∂y
, V = VI (x, y) =

∂ΨI

∂x
at t = 0. (5.2)

Following RG we represent the solution in the form of the asymptotic expansions:

U = U0(x, y, t, T , T2 . . .) + εu(x, y, t, T , T2 . . .) + · · · , (5.3a)

V = V0(x, y, t, T , T2 . . .) + εv(x, y, t, T , T2 . . .) + · · · , (5.3b)

P = Ψ (x, y, t, T , T2 . . .) + εh(x, y, t, T , T2 . . .) + · · · . (5.3c)

Here T = εt, Tn = εnt, n = 2, 3 . . . , are the slow times introduced to prevent the solution
from a secular growth in time.

Due to geostrophically balanced initial conditions (5.2), at the lowest order the
solution does not depend on the fast time t and obeys the geostrophic relationships

U0 = −∂Ψ

∂y
, V0 =

∂Ψ

∂x
; Ψ = Ψ (x, y, T , . . .). (5.4)

To describe the first-order solution, we obtain from (5.1)–(5.3) the equations

∂u

∂t
− v +

∂h

∂x
= Ru,

∂v

∂t
+ u +

∂h

∂y
= Rv,

∂(ς − h)

∂t
= Rς, (5.5a–c)

v|y=0 = 0, (u, v, h)t=0 = 0, (5.5d, e)

Ru =

(
∂

∂T
− ∂Ψ

∂y

∂

∂x
+

∂Ψ

∂x

∂

∂y

)
∂Ψ

∂y
, Rv = −

(
∂

∂T
− ∂Ψ

∂y

∂

∂x
+

∂Ψ

∂x

∂

∂y

)
∂Ψ

∂x
, (5.6a, b)

Rς = −∂(∇2Ψ − Ψ )

∂T
− J (Ψ, ∇2Ψ ). (5.6c)

Here ς − h = ∂xv − ∂yu − h is the first-order potential vorticity.
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The streamfunction Ψ does not depend on the fast time t, and therefore, by virtue
of (5.5c) for ς −h to be bounded as t → ∞, the function Rς must be identically zero,

Rς = 0, (5.7)

whence we obtain that Ψ satisfies equation (1.4d).
Taking into account (5.7), we obtain the first-order mass conservation equation

from (5.5a–c) in the form

∂h

∂t
+

∂u

∂x
+

∂v

∂y
=

∂Rv

∂x
− ∂Ru

∂y
, (5.8)

which shows that changes of the first-order total mass M1 =
∫

y>0
h dx dy in the

localized case are expressed as

∂M1

∂t
=

∫ ∞

−∞
Ru(x, 0, t) dx =

∫ ∞

−∞

∂2Ψ

∂y∂T

∣∣∣∣
y=0

dx. (5.9)

We see that these changes compensate exactly the changes of the lowest-order
geostrophic mass given by (2.2). Therefore, instead of splitting the solution to (5.5),
(5.6) into the fast and slow components used in RG, here we represent it as a sum

(u, v, h) = (uc, vc, hc) + (uj , vj , hj ), (5.10)

where the components conserving the corresponding total mass fields uc, vc, hc obey
the equations

∂uc

∂t
− vc +

∂hc

∂x
= R′

u = Ru − e−y ∂2Ψ

∂y∂T

∣∣∣∣
y=0

,
∂vc

∂t
+ uc +

∂hc

∂y
= Rv,

∂(ςc − hc)

∂t
= 0,

(5.11a–c)

vc|y=0 = 0, (uc, vc, hc)t=0 = 0, (5.11d, e)

while the residual fields uj , vj , hj responsible for the mass changes (5.9) satisfy the
system

∂uj

∂t
− vj +

∂hj

∂x
= e−y ∂2Ψ

∂y∂T

∣∣∣∣
y=0

,
∂vj

∂t
+ uj +

∂hj

∂y
= 0,

∂(ςj − hj )

∂t
= 0, (5.12a–c)

vj |
y=0 = 0, (uj , vj , hj )t=0 = 0. (5.12d, e)

Analysis of system (5.11) is performed exactly in the same way as in § 5 of RG and
reveals that the fields uc, vc, hc are localized; therefore, they are unimportant if we
are interested in the leading-order solution.

The solution to system (5.12) is sought in the form

(uj , vj , hj ) = (φj , 0, φj ) e−y, (5.13)

which satisfies no-flux boundary condition (5.12d). The evolution of φj is described
by the equation

∂φj

∂t
+

∂φj

∂x
=

∂2Ψ

∂y∂T

∣∣∣∣
y=0

. (5.14)

The solution for φj satisfying zero initial condition is written as

φj (x, t, T ) =

∫ x

x−t

∂2Ψ

∂y∂T

∣∣∣∣
y=0

dx ′. (5.15)
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Figure 8. Schematic representation of the time evolution of the compensating jet in the
oscillating regime. Plots of the amplitude φ

(c)
j in (5.21) are shown for different times for the

model case ∫ ∞

−∞
∂2Ψ/∂y∂T |y=0 dx = (

√
π/2) sin(0.5t)

with function ϕ(x) = (2/
√

π) exp(−4x2). Numbers near the curves denote the scaled time t/π.
It is seen that the jet length increases monotonically with time and its intensity oscillates,
changing its sign. Arrows show the direction of the jet velocity.

It follows from (5.14) that the solution (5.13), (5.15) can be interpreted as a forced
Kelvin wave generated by the along-wall slow velocity varying in time. This wave
looks like an injected jet propagating along the wall to the right of the localized
lowest-order disturbance as shown in figures 8 and 9. The time derivative of the total
mass of the jet is equal to

∂

∂t

∫
y>0

e−yφj dx dy =

∫ ∞

−∞

∂2Ψ

∂y∂T

∣∣∣∣
y=0

dx = −∂M

∂T
. (5.16)

Comparing (2.2) to (5.16) we conclude that this compensating jet takes away the
surplus or shortage (depending on the sign of ∂M

/
∂T ) of the mass from the localized

lowest-order disturbance; if the geostrophic mass M decreases (increases), then the
jet velocity uj is positive (negative) for sufficiently large x and t � x.

We now consider the dynamics of compensating jet (5.13) in detail, representing
the amplitude φj in the form

φj =

∫ x

x−t

a(x, T ) dx +

[∫ ∞

−∞

∂2Ψ

∂y∂T

]
y=0

∫ x

x−t

ϕ(x) dx, (5.17)

where

a(x, T ) =

[
∂2Ψ

∂y∂T
− ϕ(x)

∫ ∞

−∞

∂2Ψ

∂y∂T

]
y=0

, (5.18)
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Figure 9. The same as in figure 8 except that it is for the ‘limiting’ regime. It is seen that the
jet length also increases monotonically with time while its intensity gradually tends to zero.

and ϕ(x) is an arbitrary localized function satisfying the condition∫ ∞

−∞
ϕ(x) dx = 1. (5.19)

The function a(x, T ) is also localized in x and∫ ∞

−∞
a(x, T ) dx = 0 (5.20)

by virtue of (5.19). One can readily show that the first term on the right-hand side of
(5.17) does not make any contribution to the integral on the left-hand side of (5.16)
and the mass conservation is provided by the second term on the right-hand side of
(5.17),

φ
(c)
j =

[∫ ∞

−∞

∂2Ψ

∂y∂T

]
y=0

∫ x

x−t

ϕ(x) dx = −∂M

∂T

∫ x

x−t

ϕ(x) dx. (5.21)

For example, we can choose the function ϕ(x) as

ϕ(x) =
c√
π

e−c2x2

, (5.22)

where c is a constant. Note that the arbitrariness of ϕ(x) is related to the fact that
representation of a function as a sum of localized and non-localized parts is not
uniquely defined.

Integral
∫ x

x−t
ϕ(x) dx represents the along-wall jet expanding with the constant speed

of a Kelvin wave to the right of the initial perturbation. The slow time-dependent
amplitude −∂M/∂T (time rate of the total mass with a minus) determines the jet sign
and intensity at each moment. In the oscillating regime the jet sign and intensity also
slowly (in comparison with the jet propagation) oscillate as shown in figure 8. The
limiting regime is represented in figure 9. In this case the jet sign does not change
and the jet amplitude slowly tends to zero.
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6. Comparison of localized and periodically localized solutions
We have considered the situation when a localized disturbance interacts with an

infinitely long boundary and shown that the QG component of the motion obeys the
zero boundary condition for the QG streamfunction. In the case of periodic motion
or motion in a finite domain the boundary conditions for the QG component are
more complicated: the boundary streamfunction is an unknown function of the slow
time T and is determined using the condition of conservation of circulation of the
along-wall QG velocity (see e.g. Phillips 1954, McWilliams 1977 and below). It is
possible, however, that for some conditions the zero boundary conditions for the QG
streamfunction can be used approximately, if the motion is sufficiently localized and
the domain is sufficiently large. The using of zero boundary conditions for the QG
component instead of more complicated ones will be referred to as the approximation
of an infinite domain. An important question is: what are the conditions for the
approximation of infinite domain to be applied? To answer this question we need to
investigate the evolution of a localized perturbation in a bounded domain having a
size greatly exceeding the typical size of the perturbation. However, the problem of
geostrophic adjustment in a closed basin is not yet solved even for the linear case.
Instead, we consider problem (5.1) with periodic initial conditions of the form

Ψ
(P )
I =

∞∑
n=−∞

Ψ
(L)
I (x + nLx, y), (6.1)

where Ψ
(L)
I (x, y) is a localized function sufficiently rapidly decaying at x → ±∞, y →

∞; Lx is the period. Superscripts (P ), (L) here and below denote the periodic
and localized solutions, respectively. For convenience initial condition (6.1) and the
corresponding solution Ψ (P )(x, y, t) will be referred to as periodically localized.

The primary aim here is to compare the solutions of the localized problem for
initial streamfunction Ψ

(L)
I (x, y) with the periodically localized problem for initial

streamfunction (6.1). Such a comparison, being interesting per se, allows us to better
understand the evolution of localized disturbances in closed domains.

The solution to the RSW system (5.1) for periodic initial conditions is represented
in the same way as in the preceding Section; equations (5.1) to (5.15) (excluding (5.9))
remain valid in the periodic case. The main difference is in boundary conditions for
the QG equation (1.4d). For periodic QG motion condition (1.9) should be replaced
by the more ‘general’ condition:

Ψ (P ) = Ψ (B)(T ) at y = 0, (6.2a)

where Ψ (B)(T ) is an unknown function of the slow time. Because the amplitude (5.15)
of the forced Kelvin wave as t → ∞ must remain finite, another boundary condition
is ∫ Lx

0

∂2Ψ (P )

∂y∂T

∣∣∣∣
y=0

dx = 0 (6.2b)

(it is easy to check that if (6.2b) is not satisfied, then φj grows linearly in time).
Note that traditionally, the condition (6.2b) is obtained from conservation of the
QG velocity circulation or conservation of QG mass (e.g. Phillips 1954; McWilliams
1977; Kamenkovich & Reznik 1978). Simple analysis shows that the solution to
system (5.11) is always periodic, bounded as t → ∞, and does not impose additional
restrictions on the lowest-order fields.
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Thus, in the periodic case, the lowest-order QG component obeys equation (1.4d)
and the usual boundary conditions (6.2a, b), but contrary to the localized case, the
total QG mass in each periodic box is conserved.

Approximate localized and periodically localized solutions can be written in the
same form; for example, for the geopotential we have

P (L) ∼= Ψ (L) + εe−y

∫ x

x−t

[
∂2Ψ (L)

∂y∂T

]
y=0

dx, (6.3)

P (P ) ∼= Ψ (P ) + εe−y

∫ x

x−t

[
∂2Ψ (P )

∂y∂T

]
y=0

dx. (6.4)

We neglect parts of the first-order solution which conserve mass and are insignificant
physically when writing (6.3), (6.4).

We now represent the QG solution of periodic problem (1.4d), (6.2a, b) in the form

Ψ (P ) = ΨB(T )e−y + Ψ̃ (P ). (6.5)

The function Ψ̃ (P ) obeys the equations

∂
(
∇2Ψ̃ (P ) − Ψ̃ (P )

)
∂T

+ J
(
Ψ̃ (P ), ∇2Ψ̃ (P )

)
+ ΨBe−y

∂
(
∇2Ψ̃ (P ) − Ψ̃ (P )

)
∂x

= 0, (6.6a)

Ψ̃ (P )
∣∣
y=0

= 0, Ψ̃ (P )
∣∣
T =0

= Ψ
(P )
I . (6.6b, c)

By virtue of (6.2b) the function ΨB is related to Ψ̃ (P ) in the following way:

∂ΨB

∂T
=

1

Lx

∫ Lx

0

∂2Ψ̃ (P )

∂y∂T

∣∣∣∣
y=0

dx. (6.7)

We now construct an approximate solution to the problem (6.6), (6.7) for Lx � 1.
At the initial moment ΨB = 0, ∂ΨB/∂T = O(1/Lx) (see Appendix B); therefore the
solution is sought in the form of asymptotic expansions in the parameter δ = 1/Lx 
 1:

Ψ̃ (P ) = Ψ̃
(P )
0 + δΨ̃

(P )
1 + · · · , ΨB = δΨB0 + δ2ΨB1 + · · · . (6.8a, b)

At the lowest order we have

∂
(
∇2Ψ̃

(P )
0 − Ψ̃

(P )
0

)
∂T

+ J
(
Ψ̃

(P )
0 , ∇2Ψ̃

(P )
0

)
= 0, Ψ̃

(P )
0

∣∣
y=0

= 0, Ψ̃
(P )
0

∣∣
T =0

= Ψ
(P )
I , (6.9a–c)

∂ΨB0

∂T
=

∫ Lx

0

∂2Ψ̃
(P )
0

∂y∂T

∣∣∣∣∣
y=0

dx. (6.9d)

If the initial function Ψ
(L)
I is strongly localized, for example it behaves as O(e−r )

for r → ∞ then the localized solution Ψ (L) also behaves as O(e−r ) for r → ∞ (see
Appendix B). Therefore, the approximate solution Ψ̃

(P )
0 satisfying (6.9a–c) accurate

within exponentially small terms O(e−1/δ) can be written in the form

Ψ̃
(P )
0 =

∞∑
n=−∞

Ψ (L)(x + nLx, y, T ). (6.10)

Substituting (6.10) into (6.9d) we obtain

∂ΨB0

∂T
=

∫ ∞

−∞

∂2Ψ (L)

∂y∂T

∣∣∣∣
y=0

dx. (6.11)
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Figure 10. Schematic representation of the evolution of the periodically localized solution.
Large peaks correspond to regions of localized motion, refers n to the box number. Propagation
of the forced periodic Kelvin wave is shown at the time t < Tr (solid line) when the approxima-
tion of an infinite domain can be still used, and at the time t � Tr (dashed line) when condition
(6.2) can be applied.

Using (6.8) the approximate solution (6.4) can be written as follows:

P (P ) ∼= Ψ̃
(P )
0 + εe−y

∫ x

x−t

[
∂2Ψ̃

(P )
0

∂y∂T

]
y=0

dx + δe−y

[
ΨB0 − εt

∂ΨB0

∂T

]
. (6.12)

We now consider the periodic solution (6.12) in the domain |x| � Lx/2, i.e. in the
central box for n= 0 (see figure 10); because of periodicity, the analogous results will
be valid for any box. Due to the rapid decay of Ψ (L) at infinity we have

Ψ̃
(P )
0 = Ψ (L) + O

(
e−1/δ

)
, |x| � Lx/2, (6.13)

i.e. in this box the first term in (6.12) is close to the first term in localized solution
(6.3).

Using (6.10), the integral in second term in (6.12) can be written as

J (P ) =

∫ x

x−t

[
∂2Ψ̃

(P )
0

∂y∂T

]
y=0

dx =

∞∑
−∞

∫ x+nLx

x−t+nLx

∂2Ψ (L)

∂y∂T

∣∣∣∣
y=0

dx. (6.14)

The integrals with n �= 0 in (6.14) can be neglected for t 
 Lx, |x| � Lx/2, i.e.

J (P ) ∼=
∫ x

x−t

[
∂2Ψ (L)

∂y∂T

]
y=0

dx, t 
 Lx, |x| � Lx/2. (6.15)

However, for larger times t = O(Lx) one should take into account the integral with
n = 1:

J (P ) ∼=
∫ x

x−t

[
∂2Ψ (L)

∂y∂T

]
y=0

dx +

∫ x+Lx

x−t+Lx

[
∂2Ψ (L)

∂y∂T

]
y=0

dx, t =O(Lx), |x| � Lx/2. (6.16)

The formulae (6.15), (6.16) are simply interpreted. The second term in (6.12) is the
Kelvin wave generated by the periodically localized structure Ψ̃

(P )
0 . In each periodic
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box this wave almost coincides with corresponding compensating jet radiated by
the corresponding localized QG motion in the middle of the box up to the time
t 
 t0 =O(Lx). Here t0 is the time for the compensating jet produced in the box n to
reach the localized motion domain in the box n – 1 located to the right of the box n

as it is shown in figure 10.
We now consider the last term in (6.12) related to the along-shore current δΨB0e

−y

providing QG mass conservation. If the period Lx � 1/ε then for times t 
 Lx the
last term in (6.12) is small,

ΨB0 − εt
∂ΨB0

∂T
= O(δε2t2) 
 εO

(
t2

L2
x

)

 ε, (6.17)

and can be neglected. In the case Lx � 1/ε, i.e. δ 
 ε, this term also can be neglected
at t 
 Lx . Thus, for any period Lx � 1 the periodic solution P (P ) in each periodic
box is closed to the corresponding localized solution P (L) at times t 
 Lx .

Thus, our comparison shows that for a fixed period Lx larger than the typical
scale Lloc of the localized field Ψ

(L)
I the interaction between adjacent boxes can be

neglected up to time Tr = O(Lx/cK ) where cK is a Kelvin wave phase speed (equal
to 1 in our scaling). This is related to the fact that the motion in a given box m

does not depend on the adjacent boxes until the lowest-order Kelvin wave and the
compensating jet radiated by the localized perturbation Ψ

(L)
I (x + mLx, y) reach the

‘next’ perturbation Ψ
(L)
I (x + (m − 1)Lx, y). At times t 
 Tr the periodic boxes can

be approximately considered as isolated ones and the zero boundary condition (1.9)
can be used to describe the geostrophic component in each of these boxes. For times
t � Tr the boxes influence each other, and one should take into account the along-wall
uniform current ΨB(T )e−y evolving in the slow time T and providing the slow mass
conservation in the periodic case. Note that the magnitude of this current is O(1/Lx)
and tends to zero with increasing Lx .

The above periodic case is in some sense analogous to the case of a localized
perturbation in a closed basin. Our analysis allows us to expect that the geostrophic
adjustment in the closed basin develops in the same way as in the periodic case (6.1),
i.e. the adjustment is accompanied by the radiation of the lowest-order Kelvin wave
and the compensating jet propagating around the basin to the right of the localized
perturbation, the signal being exponentially small ahead of the wave and jet. For the
wave and jet to reach the location of the initial perturbation from the ‘other’ side, a
time Tr = O(Lb/cK ) is required where Lb is a typical basin size. Obviously, the time Tr

increases with increasing basin scale Lb. On times t � Tr a zero boundary condition
such as (1.9) can be used for the geostrophic component, for times t > Tr conditions
such as (6.2) should be posed. For ‘small’ basins with Lb � Rd/ε the time Tr � 1/f ε,
and conditions like (6.2) are required to describe the slow geostrophic evolution. For
larger basins with Lb > Rd/ε (for example, in the ocean) a condition such as (1.9) can
be used up to times of the order of Tr > 1/f ε for the localized QG perturbations.

Thus, the approximation of infinite domain can be used if (i) the typical basin scale
greatly exceeds the typical size of the localized perturbation and the Rossby scale;
(ii) the time does not exceed the typical time Tr which is required for the Kelvin wave
to travel the typical basin scale.

Finally, we consider dynamics of the along-wall current ΨB(T )e−y . For the periodic
motion the total mass of the QG component is conserved in each periodic box;
therefore, by virtue of (6.5) the along-wall current ΨB(T )e−y can be considered as a
flow compensating variation of mass of the component Ψ̃ (P ). One can show that this
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current is formed by the periodic forced Kelvin wave generated by the component
Ψ̃ (P ). This is especially clearly seen for times t 
 1/ε when solution (6.12) takes the
form

P (P ) ∼= Ψ̃
(P )
0

∣∣∣
T =0

+ εt
∂Ψ̃

(P )
0

∂T

∣∣∣∣∣
T =0

+ εe−y

∫ x

x−t

[
∂2Ψ̃

(P )
0

∂y∂T

]
y=0,T =0

dx

= Ψ̃
(P )
0

∣∣∣
T =0

+ εt
∂Ψ̃

(P )
0

∂T

∣∣∣∣∣
T =0

+ εte−y

〈[
∂2Ψ̃

(P )
0

∂y∂T

]
y=0,T =0

〉
+ εe−ys (6.18)

where s is a function periodic in x and bounded in t . The angle brackets denote
averaging in x:

〈a〉 =
1

Lx

∫ Lx

0

a dx. (6.19)

It is seen from (6.18) that the propagation of the forced periodic Kelvin wave gives
rise to an along-wall current linearly growing in time t (the last term on the right-hand
side of (6.18)).This current is approximately described by the streamfunction ΨB(T )e−y

at times t 
 1/ε with the boundary value ΨB(T ) corresponding to the linearly growing
mass of the forced Kelvin wave.

For larger times an analogous conclusion can be drawn using the equation

∂ΨB

∂T
=

∂

∂t

〈∫ x

x−t

∂2Ψ̃ (P )

∂y∂T

∣∣∣∣
y=0

dx

〉
, (6.20)

which readily follows from (6.7). By virtue of (6.20), the change of mass of the QG
along-wall current is exactly equal to the change of mass of the forced Kelvin wave.

7. Summary and conclusion
We have analysed the evolution of a localized flow near a straight infinite

boundary when the total mass is not conserved within the equivalent-barotropic quasi-
geostrophic (QG) approximation. A simple formula expressing the total geostrophic
mass in terms of the QG potential vorticity is derived and used to estimate the range
of the geostrophic mass variability. The behaviour of the total mass is analysed for
the system of two point vortices interacting with a wall. The evolution of distributed
localized perturbations is examined by means of numerical experiments using the
QG model. Two types of time variability of the total geostrophic mass are revealed:
oscillating (the mass oscillates near some mean value) and limiting (the mass tends
to some constant value with increasing times).

The equation relating the geostrophic mass to the QG potential vorticity shows that
the total geostrophic mass changes are related to the displacements of fluid particles
perpendicular to the boundary y =0; displacements along the boundary do not affect
the total mass. This equation written in the Lagrangian variables is used to estimate
the range of the geostrophic mass variability. The bounds of the mass are expressed
in terms of the initial geostrophic elevation field. If the QG potential vorticity has
one sign, then the absolute value of total geostrophic mass is maximal when all fluid
particles are located along the straight line y = ȳe where ȳe is the distance from the
quasi-geostrophic PV centroid to the wall (a conserved quantity).
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These formulae for total geostrophic mass and corresponding estimates were gener-
alized to the case of a system of point vortices interacting with the wall and each other.
The system of two point vortices was examined in detail. It was shown that if the initial
distance between the vortices is sufficiently small then the vortices move periodically,
rotating around some moving centre. Correspondingly, the total mass M2 and its time

derivative Ṁ2 are periodical functions of time, the absolute value of the mass being
maximal when the system is elongated along the wall and minimal for the system
elongated perpendicular the wall. If the initial distance is sufficiently large, then the
motion of the pair is non-periodic, and the distance between the vortices increases
monotonically starting from some time. Correspondingly, the interaction between
the vortices weakens, and as time passes, the vortices move almost rectilinearly and
uniformly along the boundary. With increasing time, the total mass M2 tends to a
constant value.

Distributed localized perturbations were examined numerically using the QG model.
The evolution of the distributed dipole is qualitatively similar to the evolution of a
pair of point vortices opposite in sign. Interaction with the boundary results in the
destruction of the dipole, and the vortices gradually move apart from each other:
eventually the couple splits into two monopoles moving in opposite directions along
the boundary. In the course of time, the total mass increases and tends to a new
constant value. The change of the mass can exceed 50% of the initial value in this
case, i.e. it could become significant.

The evolution of monopolar vortices is qualitatively similar to the behaviour of a
pair of vortices of the same sign. The total mass variability in this case is substantially
less than for the dipole. The main change of the mass takes place during an initial
adaptation period, and later the mass oscillates with small amplitude near some
mean value. The mass is minimal (maximal) when the perturbation is elongated
perpendicular to (along) the wall, as it is for the point vortex pair.

Considering the next-order dynamics, we found that the conservation of the total
mass and circulation is provided by a compensating jet taking away the surplus,
or shortage, of mass from the localized lowest-order slow disturbance. A simple
representation for the compensating jet was obtained for both oscillating and limiting
regimes revealed by the QG analysis. It is seen from this representation that the
along-wall jet expands with the fast speed of a Kelvin wave to the right of the initial
perturbation. The slow time-dependent amplitude −∂M/∂T determines the jet sign
and intensity at each moment. In the oscillating regime the jet sign and intensity also
slowly (in comparison with the jet propagation) oscillate. If the mass M tends to a
constant value in the course of time, then the jet sign does not change and the jet
amplitude slowly tends to zero.

Limits of validity of the model considered when a localized disturbance interacts
with an infinitely long boundary are discussed. The approximation of an infinite
domain can be used if (i) the typical basin scale greatly exceeds the typical size of
the localized perturbation and the Rossby scale; (ii) the time does not exceed the
typical time which is required for the Kelvin wave to travel the typical basin scale.
These conditions are typical for synoptic eddies of 100 km spatial scale and 10 days
temporal scale in the ocean with a basin scale of few thousands km and baroclinic
Kelvin wave speed about 2 m s−1.
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Appendix A
According to the Lagrange multipliers method, the following functional is

introduced:

N = −
∫

y0>0

Q0(x0, y0)[1 − λȳ − e−ȳ] dx0 dy0 (A 1)

where λ is a Lagrange multiplier. The corresponding Euler equation for the extremal
ȳ = ȳe(x0, y0) is written in the form

λ − e−ȳe = 0, (A 2)

whence it follows that ȳe is a constant related to λ by the equation

ȳe = ln λ. (A 3)

The constants ȳe and λ are determined from equation (2.13b),

ȳe =

∫
y0>0

y0Q0(x0, y0) dx0 dy0∫
y0>0

Q0(x0, y0) dx0 dy0

, (A 4)

and (A 2).
The second variation of the functional N on the extremal ȳ = ȳe is equal to

δ2N = −α2

2
e−ȳe

∫
y0>0

η2Q0(x0, y0) dx0 dy0. (A 5)

Here αη is a perturbation to ȳe such that η is an arbitrary bounded function and
α → 0. Obviously, δ2N is sign-definite only if the PV Q0 does not change its sign, i.e.
the sufficient conditions for existence of a maximum or minimum of the functional
Ma are satisfied only in the case of PV of fixed sign. Also, the coordinate ȳe is positive
for Q0 of a fixed sign. Thus, for Q0 of a fixed sign the absolute value of functional
(2.13a) is maximal on the extremal ȳ = ȳe.

Appendix B
B.1. Behaviour of Ψ (L) at infinity

Let us write equations (1.4d), (1.5), and (1.9) for Ψ (L) in the form

∇2 ∂Ψ (L)

∂T
− ∂Ψ (L)

∂T
= −J

(
Ψ (L), ∇2Ψ (L)

)
, Ψ (L)

∣∣
T =0

= Ψ
(L)
I (x, y), (B 1a, b)

Ψ (L) = 0 at y = 0. (B 1c)

At some moment T = T0 the field Ψ (L) is strongly localized, so that

Ψ (L) = O(e−r ), r =
√

x2 + y2 → ∞. (B 2)

By virtue of (B 1a, c) the same estimate is valid for the time derivative ∂Ψ (L)/∂T :

∂Ψ (L)

∂T
= O(e−r ), r → ∞. (B 3)
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It follows from (B 2), (B 3) that the estimate (B 2) is valid at the next moment
T = T0 + dT , i.e. all time. Thus if the initial field Ψ

(L)
I is O(e−r ) then this estimate

remains unchanged in time.

B.2. Behaviour of ∂ΨB/∂T at T = 0

Let us write (1.4d) for Ψ (P ) in the form analogous (B1a):

∇2 ∂Ψ (P )

∂T
− ∂Ψ (P )

∂T
= −J

(
Ψ (P ), ∇2Ψ (P )

)
, (B 4)

and integrate (B 4) in x from 0 to Lx . As a result we obtain

syy − s = −
∫ Lx

0

J
(
Ψ (P ), ∇2Ψ (P )

)
dx, s =

∫ Lx

0

∂Ψ (P )

∂T
dx. (B 5a, b)

We now multiply (B 5a) by e−y and integrate the resulting equation in y from 0 to
∞; using boundary conditions (6.2) we have

∂ΨB

∂T
=

1

Lx

∫ ∞

0

e−y dy

∫ Lx

0

∂Ψ (P )

∂x

∂2Ψ (P )

∂y2
dx. (B 6)

Correspondingly, at the initial moment

∂ΨB

∂T

∣∣∣∣
T =0

=
1

Lx

∫ ∞

0

e−y dy

∫ Lx

0

∂Ψ
(P )
I

∂x

∂2Ψ
(P )
I

∂y2
dx. (B 7)

By virtue of initial condition (6.1) we have to within exponentially small values

∂Ψ
(P )
I

∂x

∂2Ψ
(P )
I

∂y2
=

∞∑
−∞

g(x + nLx, y), g(x, y) =
∂Ψ

(L)
I

∂x

∂2Ψ
(L)
I

∂y2
. (B 8a, b)

It readily follows from (B 7), (B 8) that

∂ΨB

∂T

∣∣∣∣
T =0

=
1

Lx

∫ ∞

0

e−y dy

∫ ∞

−∞

∂Ψ
(L)
I

∂x

∂2Ψ
(L)
I

∂y2
dx = O

(
1

Lx

)
.

Appendix C
The localized solution to the equation ∇2Ψ − Ψ = Q obeying the no-flux condition

(1.9) is written as follows:

Ψ (x, y, t) = − 1

2π

∫
y ′>0

Q(x ′, y ′, t)[K0(r) − K0(r̄)] dx ′ dy ′, (C 1a)

where

r =
√

(x − x ′)2 + (y − y ′)2, r̄ =
√

(x − x ′)2 + (y + y ′)2 (C 1b)

and Kn(z), n = 0, 1, . . . denotes the nth-order modified Bessel function. Inside the
integrand in (C 1a) the terms proportional to K0(r) and K0(r̄) correspond to the
contribution made by the ‘real’ and ‘image’ point vortices, respectively.

We now consider a system of point vortices interacting with each other and
with their images and moving along some trajectories r = rk(t). Here r = r(x, y) and
k = 1, 2, . . . N denote the radius vector and the number of the vortex, respectively.
The streamfuction Ψ obeys the equations:

∇2Ψ − Ψ =

N∑
k=1

Akδ(x − xk(t))δ(y − yk(t)), Ψ |y=0 = 0 (C 2a, b)
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where Ak is a constant amplitude of kth point vortex and δ(z) is the Dirac delta-
function. The solution to (C2) is written in the form

Ψ =
1

2π

∑
k

Ak[K0(|r − rk|) − K0(|r − r̄k|)], rk = (xk, yk), r̄k = (xk, −yk).

(C 3a, b)
In (C 3) the radius vectors rk and r̄k correspond to the ‘real’ and ‘image’ vortices,
respectively.

The motion of the nth vortex is due to its interaction with its own image and with
other vortices and their images. Equations describing this motion are obtained in the
usual way and can be written in the form

ẋn =
An

2π
K1(2yn) +

1

2π

∑
k �=n

Ak

[
ȳnkK1(r̄nk)

r̄nk

− ynkK1(rnk)

rnk

]
, (C 4a)

ẏn =
1

2π

∑
k �=n

Akxnk

[
K1(rnk)

rnk

− K1(r̄nk)

r̄nk

]
, (C 4b)

where

rnk =
√

(xn − xk)2 + (yn − yk)2, xnk = xn − xk, ynk = yn − yk, (C 4c)

r̄nk =
√

(xn − xk)2 + (yn + yk)2, ȳnk = yn + yk. (C 4d)

The first term on the right-hand side of (C 4a) describes an effect on the vortex of
its own image; clearly, this effect initiated the displacement of the vortex along the
boundary.

Multiplying (C 4b) by An and summing over n from 1 to N we arrive at an analogue
of integral (2.11) for the system of point vortices∑

n

Anyn = const. (C 5)

Integrating Ψ in (C3) over the plane y > 0, using the formula∫ ∞

−∞
K0(

√
x2 + y2) dx = πe−|y|

when deriving (C 6) (Gradshtein & Ryzhik 1980), we obtain the total mass of the
system of N point vortices (cf. analogous formula (2.6) for the distributed fields):

MN = −
∑

k

Ak(1 − e−yk ). (C 6)

One can derive an estimate analogous to (2.15) using the Lagrange multipliers
method to analyse the extrema of the function

M
(a)
N = M

(a)
N (y1, y2, . . . yN ) = −

∑
k

Ak(1 − e−yk ) (C 7)

under condition (C 5) given the amplitudes Ak . The analysis shows that if the Ak are
of the same sign then the modulus |M (a)

N | has a maximum equal to∣∣M (a)
N

∣∣
max

= (1 − e−yc )
∑

k

|Ak| (C 8)
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at the point

y1 = y2 = · · · = yN = yc =
∑

k

Akyk

/∑
k

Ak. (C 9)

Respectively, estimate (2.15) in the case of a system of N point vortices is rewritten
as

|MN | �
∣∣M (a)

N

∣∣
max

= (1 − e−yc )
∑

k

|Ak|. (C 10)

Using (C 4b) one can derive the following useful formula for the mass time
derivative:

ṀN = − 1

4π

∑
k �=n

AkAnxnk

[
K1(rnk)

rnk

− K1(r̄nk)

r̄nk

]
(e−yn − e−yk ). (C 11)
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